A guide to prescribed burning
Contents

Why we burn.................................1
Bushfire fuel5
Fire behaviour13
What is Prescribed Burning..........15
Prescribed burn preparation........17
The day of the burn20
Animals and fire25
After the burn27
Vegetation recovery29
Weed control31
Temporary Control
Line Recovery33
Fuels over time35
Introduction

Why we burn

Prescribed burns are used to reduce fuel loads across strategic areas of public and private land to help limit the spread and intensity of bushfires and protect communities. Low fuel areas created by burns provide safer areas for fire fighters to work from. As well as protecting people and property, prescribed burns are used to manage vegetation and promote biodiversity.
Strategic burn planning to protect houses

Peri-urban areas at risk of bushfire
Orchid flowering following prescribed burn
The germination of many native plant species is promoted by fire.

Some species of native animals prefer regenerating vegetation after fire while others like long unburnt habitat.

Prescribed burning aims to manage the landscape so that there are a mix of habitats available for different animals.

Prescribed burning is also used for environmental outcomes such as protecting animal habitats, assisting the regeneration of plant species and to aid in the control of weeds.

The germination of many native plant species is promoted by fire.

Some species of native animals prefer regenerating vegetation after fire while others like long unburnt habitat.

Prescribed burning aims to manage the landscape so that there are a mix of habitats available for different animals.
Bushfire Fuels are made up of the living and dead vegetation that burns and carries a fire. Fuels can be characterised by type, size, quantity, arrangement and moisture content.
Bushfire fuels include:

- Forest litter lying on the ground (twigs & leaves)
- Shrubs and low growing plants
- Grasses
- Trees, logs, stumps and bark
Elevated fuels
These might be shrubs or small trees

Bark fuels
Rough or loose bark on tree trunks and branches.

Fine fuels
On the ground such as bark and leaf litter
Fine fuels

Fine fuels are defined as any dead or live plant material less than 6mm wide, or smaller than your little finger.

This includes fallen bark, leaf litter, grass, tussocks, heath and some shrubs. These fuels dry out fast and heat up quickly as a fire approaches, which means they catch alight and burn easily.

Fine fuels carry the fire forward, making them the most dangerous of all the fuel types. This is the main fuel type targeted in prescribed burns.
Coarse fuels

Larger fuels such as tree branches and fallen logs take longer to catch alight and therefore they don't carry the fire, however once they have 'caught' they burn for some time after the front has passed.

Bark fuels

Wind can carry burning bark fragments long distances and create spot fires ahead of the main fire. This can make controlling a bushfire extremely difficult.

Burning the bark of rough-barked trees in a prescribed burn reduces:

- the risk of spotfires during a bushfire,
- the risk of ember attack on properties and
- the intensity of bushfires in that area for a longer period of time than burning fine fuels alone.
Fuel Loads

Before conducting a prescribed burn, staff will measure the fuel load present at the site.

This helps us estimate the bushfire risk, and will also give information about what fire behaviour to expect when it burns.
VERY HIGH-EXTREME fuel

HIGH fuel
Fire Behaviour

Is affected by:

- Fuel type (e.g. coarse, fine), connectivity and dryness
- Climatic conditions (wind, temperature, humidity)
- Slope
What is Prescribed burning?

Prescribed burning is defined as the process of planning and applying fire to a predetermined area, under specific environmental conditions, to achieve a desired outcome.

In South Australia they are referred to as prescribed burns because they follow a ‘prescription’ with a number of conditions that must be met.

To burn safely and effectively the right combination of:

- fuel load
- fuel moisture
- temperature
- relative humidity
- and wind speed

must be determined for each site. These factors, along with the site’s slope, will determine the intensity and speed at which a site will burn.
Portable weather stations can be used to give accurate on-site information.
Prescribed Burn Preparation

Preparing for a prescribed burn involves a lot of planning and on ground work. Burn planning begins years in advance and burns are added to a dynamic rolling program.

- Environmental surveys
- Pre burn weed control
- Protection of environmental assets
- Burn objective
- Measuring the fuel load and moisture
- Planning truck and firefighter locations
- Putting in control lines
- Continually checking the weather
There are a variety of operational tasks that crews do on-site before a burn to make it safer and more effective.

Actions aimed at reducing environmental impacts and providing ecological benefits include:

- Environmental surveys
- Pre burn weed control
- Protection of environmental assets
Actions undertaken to make a burn safer to conduct include:

- Creating control lines (brushcutting, verging tracks, etc)
- Planning the number, location, and positioning trucks and firefighters
- Measuring the fuel load and moisture
- Ensuring there are adequate water supplies nearby

Photo: Clearing around hollow bearing trees to protect them
The Day of the Burn

Once the planning and preparation are complete, and the weather conditions match with the required conditions that have been calculated, a small test burn is conducted.

If the fire behaves as planned the burn will continue, otherwise it will be postponed until conditions are more suitable.
Pre-burn briefing to fire crews

Operations Officer timing a test burn to check fire behaviour
Day of the Burn

Checking the weather on ground before ignition

Ignition begins: lighting up the edge of a burn with a drip torch
Prescribed burning is conducted by highly trained firefighters from DEW, CFS, ForestrySA, and/or SA Water.

These agencies also have the necessary equipment, protective clothing and protocols to ensure burns are conducted safely and successfully.

Photo: Aerial ignition is sometimes used for burns in inaccessible terrain
Lighting methods and patterns are tailored to each burn to manage fire intensity and make sure we can achieve our planned objective.

Once light up is complete, crews mop up and patrol the area day and night to ensure it is safe and doesn't rekindle.

Photo: Aerial view of ignition pattern and control line at Cleland Conservation Park
Animals and Fire

Before every prescribed burn, staff assess the potential impact on native animals and plants, and ensure there is enough unburnt habitat in the landscape for populations to use while the burnt habitat regenerates.

Animals have various strategies to survive in prescribed burn areas. Some will move ahead of the burn, while others will seek shelter in the tops of trees or in burrows or under rocks and logs.
After the burn

Once the burn is complete plants will regenerate and it doesn’t take long for animals to start using the area again.
Vegetation Recovery

The Australian landscape has been evolving with fire for millions of years.

Plants in fire-prone landscapes respond in two main ways, by re-sprouting or by germinating from seed. Some plants need the smoke and/or heat from fire for their seeds to germinate.

Endangered *Hibbertia tenuis* seeds appear to require fire to germinate.

Epicormic growth on a stringybark tree

Banksia seedling germination in response to fire
Some plants use the opportunity after a fire, when there is less competition from other plants, to grow prolifically and set seed.
Weed control

Fire will stimulate the germination of many plant species, including weeds. That's why controlling weeds that emerge after a burn is important.

Weed control that is planned carefully in conjunction with burns can reduce the time taken to manage the infestation and improve the recovery of native vegetation in the weedy area.
Buddleja sprayed with herbicide to ensure it burns.

Buddleja site post-burn with good access for follow up weed control.
Temporary Control Line Recovery

Temporary control lines are sometimes required to help conduct a burn safely.

After the prescribed burn, the slashed vegetation will regrow along these control lines and new plants will germinate in the cleared space.
Temporary control line on the day of the burn

One year later
Fuels over time

Bushfire fuels are not constant over time. Immediately following a fire there will be very little fuel available, but bark and leaf litter accumulate as time passes.

Plants regrow and re-establish surface and elevated fuel layers over time. Depending on the type of vegetation it can take as little as 5 years or as long as 30 years for the fuel level to return to how it was before the fire.

Some vegetation will regrow quickly and might seem as dense as it was prior to the fire, but the reduction of dead plant material and loose bark will continue to have an effect. The ‘fuel hazard’ (amount of available fuel for a bushfire) will typically be lower than it was pre-fire for at least 10 years.
For further information please contact
Department for Environment and Water phone information line (08) 8204 1910, or see SA White Pages for your local Department for Environment and Water office.

Recognition of Aboriginal Culture
All references to Aboriginal culture within this document including images, quotes, stories and language have copyright and cultural use protocols which apply. Any reproduction of this material must seek appropriate authority.

environment.sa.gov.au/topics/fire-management

With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, the content of this website is licensed under the Creative Commons Attribution 4.0 Licence. All other rights are reserved. © Crown in right of the State of South Australia.